Memoriva

AI-Powered Document Management & RAG System

RAG PipelineVector SearchGo BackendNext.js Frontend

Project Overview

🏗️ Multi-Repository Architecture

Memoriva consists of two separate repositories: frontend (Next.js) and backend (Go). Installation and setup instructions are available in each repository's README.

Memoriva is an intelligent document management and retrieval system that leverages advanced RAG (Retrieval-Augmented Generation) technology to help users organize, search, and interact with their documents in natural language.

The platform combines powerful vector search capabilities with AI-powered document analysis to provide contextual answers and insights from your document collection. Built with modern web technologies and optimized for performance and scalability.

Technology Stack

Frontend Technologies

  • Next.js 14 with App Router
  • TypeScript for type safety
  • Tailwind CSS styling
  • React Query for state management

Backend & Database

  • Go backend services
  • PostgreSQL with pgvector
  • Redis for caching
  • Docker containerization

AI & Vector Search

  • OpenAI Embeddings API
  • Vector similarity search
  • RAG pipeline implementation
  • Document chunking & indexing

Infrastructure

  • RESTful API design
  • File upload handling
  • Authentication & authorization
  • Scalable microservices

Core Features

RAG Pipeline

  • • Document ingestion & processing
  • • Intelligent text chunking
  • • Vector embedding generation
  • • Semantic similarity search
  • • Context-aware retrieval

Vector Database

  • • PostgreSQL with pgvector
  • • High-dimensional vector storage
  • • Efficient similarity queries
  • • Metadata filtering
  • • Scalable indexing

Document Processing

  • • Multi-format support (PDF, DOCX, TXT)
  • • Text extraction & cleaning
  • • Metadata preservation
  • • Batch processing capabilities
  • • Error handling & validation

Natural Language Query

  • • Conversational search interface
  • • Context-aware responses
  • • Source attribution
  • • Query refinement
  • • Multi-turn conversations

Security & Privacy

  • • User authentication
  • • Document access control
  • • Data encryption
  • • Privacy-first design
  • • Secure file handling

Performance

  • • Fast vector similarity search
  • • Caching layer with Redis
  • • Optimized query processing
  • • Concurrent request handling
  • • Scalable architecture

Source Code

Demo Video

RAG Pipeline Demo

Document Processing & Search

Watch how documents are processed, indexed, and searched using natural language queries with contextual answers.

Technical Documentation